Understanding Bad Sectors: Causes, Effects,
and Management

By Joseph Chen (2024-4-10)
l. Overview

One of the leading causes of damage and failure in disk drives is bad sectors. In simple terms,
bad sectors are unreadable locations on a disk drive's media. The purpose of this article is to
help the reader understand what bad sectors are, how they occur in the context of hard disk
design and operation, what negative effects they may create, and how they can be managed by
the drive, the system, as well as the user. We will pay special attention to how bad sectors can
be managed within NAS devices.

Disk drives are also known as Hard Disk Drives (HDDs), where the term "disk" describes the use
of disk plates in the drive as storage media. While popular storage devices called Solid State
Drives (SSDs) exist and serve a similar purpose to HDDs in computer storage, albeit with a
completely different underlying storage mechanism, this article will focus on HDDs.

Il. Introduction to Disk Drive Design

This section introduces the basic building blocks of a disk drive, which provides the context for
what bad sectors are, how they can occur, and how they are handled by the disk drive. As it has
evolved over half a century, the way that a disk drive stores data has remained the same: itis a
magnetic recording device that stores digital data for a computer. Disk drives are built with
spinning magnetic disks and one or more heads that write and read data from the surface of
the disks. Over the years, the physical size of the device shrank from the size of large
refrigerators to having an area of about 20% the size of copy paper. Not only has the physical
size been compressed, but the amount of data that can be stored has increased drastically,
from megabytes (MBs) to terabytes (TBs), effectively making the memory of modern disk drives
a million times denser than their predecessors.

Figure 1: A labeled disk drive

disk/media

actuator spindle

read/write head
parking area

A. Head and Media

The rotating disk is the basic recording medium in a disk drive. During a write operation, a head
records information on a disk by magnetizing it with an electric signal.

The head is mounted on an actuator that moves along the surface of the medium. There are
two components of the head, one for reading and another for writing. The writing component,
or write head, is responsible for recording the data on the medium. The reading component, or
read head, is responsible for picking up the signals previously recorded on the medium.

In addition, read heads are also responsible for detecting servo tracks or servo marks on the
media. Servo tracks or servo marks guide each head to a precise location on the disk for each
read and write operation.

Typically, for drives made after the year 2000, when the drive is stopped, or power is turned
off, the head will be placed in a location where it does not touch the media, called the parking
area. When not in use, the head is latched securely within the parking area, where it is not
moving, to avoid head and media contact. Contact between the head and media may cause
scratches on the media, which in turn may create particles that may cause additional scratches.

When the disk starts spinning, the media will reach a fixed speed of either 5400 RPM, or 7200
RPM, or for enterprise-class drives, 10000 RPM. The faster the rotation speed, the faster the
response the drive can provide. The disk drive can perform reads/writes only after the media
has reached a designed speed, such as 7200 RPM. After this speed is reached, the head will be
moved to a ramping location to engage the media surface. This movement is called "taking off
the head." The head flies over the media surface at a small distance, such as a few microns. The
air bearing between the head and the media allows the head to fly over the media at high
speeds without touching the media.

Under normal conditions, this flight is very safe, and the drive can operate for years without any
issues. However, there are external influences that can make the flight abnormal. For example,
external shock and vibration may cause the head to bump into the media, causing bad spots, or
causing bad read or write conditions. Other potential issues are related to the particles
generated during and after the drive is manufactured. These particles may come under the
head and create scratches.

When the drive stops spinning, the head is designed to automatically return to the parking
area. The head actuator is designed to automatically move the head smoothly onto the ramp
and then park and securely latch the head.

B. Sectors and Tracks

The heads are ready to read or write data to the media once the disk drive spins to the correct
speed. On the media, there are many invisible concentric circular lines, where each circle is a
single track. These circles are packed as closely as possible together to maximize recording
capacity. The width of each recording mirrors the width of the magnetic spot on each head.
Modern disk drives are usually constructed with tens of thousands of tracks on each surface. To
read or write data, a head likely needs to move from one track to another. This movement
includes the time it takes the head to move, settle, prepare the electronic element of the head,
and wait for the target location on the track to arrive.

Due to the rotation of the media, the time it takes to access any location on the disk is equal to
the time it takes for the head to move to its target track, plus the time it takes for the media to
rotate to its target sector. The time it takes for the head to move to its target track, while
guided by servo tracks, is called seek time, and typically takes 5 to 10 milliseconds (ms). The
media rotation speed is typically 7200 RPM or about 8 ms per revolution, so the average time it
takes for the media to move to its target sector, or rotational latency, is about 4 ms. Therefore,
the total time it takes to access any location on the disk, or total random latency, is typically
between 9 to 14 ms.

Servo tracks or servo marks are markings on the media that define the precise location of each
track, guide the head to its target track, and help the head to stay on its target track while the

media is spinning. Even if the media shifts away from its center of rotation, servo tracks allow

the head to continue to dynamically follow its target track.

Each disk surface has a single head assigned to read and write to it. In most disk drives, all
heads are mounted on a single actuator powered by a single servo motor. Therefore, whenever
a single head seeks a single track on a single disk, the disk drive's actuator typically ends up
moving all the heads simultaneously.

However, newer disk drives designed for higher performance occasionally employ multiple
actuators that allow for simultaneous multi-channel operation. But due to the added
mechanical and electrical complexity and cost of this design, it is usually limited to specialty

drives. As of early 2023, the only multi-actuator drives deployed in the market are dual-
actuator drives, and only a small number of disk drives (perhaps less than 3% of drives shipped)
have this type of construction.

A sector is a recording unit physically laid out on the track of a disk, normally consisting of 512
bytes or 4096 (4K) bytes. In a disk drive, sectors are placed in a contiguous fashion on each
track. In early disk drive designs, each sector had a dedicated ID area to distinguish it from
other sectors on the same track. However, newer disk drives simply utilize the starting point on
each track to locate each sector. By removing the ID area from each sector, which results in
what the drive manufacturing industry calls "ID-less" sectors, newer disk drives can increase
their capacity by 5% over traditional disk drives.

In error reports, two sector-related conditions that can appear are ‘ID Not Found’ and ‘Address
Mark Not Found’. These errors describe when either the sector ID or Address Mark is missing,
respectively. The Address Mark in the latter error refers to the starting point of a sector. An
Address Mark Not Found error is due to a data recording issue. ID Not Found errors, on the
other hand, are caused by an issue with the servo mark.

There are many sectors on a track, usually hundreds to thousands. The number of sectors per
track depends on the distance from the center of the disks. That is, there are more sectors per
track the further away you get from the center of each disk. The recording density remains the
same between tracks near and far from the center. However, the frequency of data reads and
writes is higher for tracks further away from the center.

Disks are usually physically divided into areas called "zones." Each zone has a distinct
read/write frequency, whose value depends on the zone's distance from the disk center.
Dividing disks into zones allows them to be used more efficiently. The number of sectors per
track in each recording zone is the same. The outer zones have more sectors per track than the
inner zones. This practice of dividing disks into zones is called “zone bit recording.”

Each track starts at the sector that gets written to first. At the end of each track, there may be
some sectors that are not used during regular reading and writing. Such sectors are called
"spare sectors." Spare sectors are reserved for use when a defective sector is found on the
track and needs to be reassigned. We will cover spare sectors in more detail in the “Spare
Sectors” section below.

The starting points of adjacent tracks are staggered to accommodate the time it takes for the
head to move from one track to the next. When the drive finishes reading or writing one track,
it may continue to the next track. To prevent the disk from having to make nearly a full rotation
before the head can read the first sector of the next track, the starting point of the next track is
offset by an amount determined by the time it takes for the head to move from one track and
settle on another. This offsetting of track starting points is called "skewing."

The drive's media is comprised of physical sectors. However, the drive's host system views and
accesses the drive's sectors as individual "logical" blocks, where each block may consist of more
than one sector. Therefore, each sector on a disk is assigned a logical number called a logical
block address (LBA), where the LBA is the address of the sector from the point of view of the
drive's host system, and where multiple sectors may be assigned to each LBA. Normally, the
total available Logical Block Number does not change for a drive after it is manufactured. Some
special commands may reduce this number, but this is not typically done.

The firmware inside the drive will map each LBA onto a physical drive location in terms of the
platter, track, and sector. There is no hard rule for how this mapping will occur. However,
traditionally, the mapping tries to optimize drive performance. And generally, the ordering of
LBAs typically proceeds from the outer cylinder (outer tracks) towards the inner cylinder (inner
tracks), and continues onto the next disk surface, and onto the next platter. LBA mapping
typically also considers spare sectors on each track, spare sectors on each group of tracks, and
spare tracks. Some spare sectors and spare tracks may be located within small areas of the
drive that are also reserved for internal tables and firmware.

C. Spare Sectors

Spare sectors are additional sectors that are not normally counted towards the drive capacity.
Spare sectors serve to mitigate the effects of drive manufacturing defects, which occur
naturally during manufacturing. Spare sectors also serve to mitigate the effects of drive defects,
which occur after the drive leaves the factory and over the drive's life. Spare sectors may be
located at the end of a track, the end of a group of sectors (such as a drive zone), or the end of
a disk. The closer a spare sector is located to a defect, the better the drive will perform.
Typically, the number of spare sectors available is sufficient to cover sector reallocation needs.

Whenever the host issues a read or write command to the drive, the drive must determine
whether the target sector has been reallocated and whether the target sector is pending
reallocation. This information is stored in two tables on the drive, a Reallocated Sector Table,
and a Pending Reallocation Table. For convenience, we will refer to these tables going forward
collectively as "drive reallocation tables." The size of these drive reallocation tables and the
speed with which they can be searched places a practical limit on the number of sectors that
can be reallocated. When this practical limit is exceeded, S.M.A.R.T. failures can result,
particularly S.M.A.R.T. Attributes 5 (i.e., Reallocation Event Count) and 197 (i.e., Current
Pending Sector Count).

There are two potential constraints on the number of available spare sectors. The first potential
constraint is simply the number of available spare sectors that the drive has at any given
moment. This number is determined during the drive's manufacturing and decreases over the
life of the drive as spare sectors are used up by the sector reallocation process to mitigate the
effects of drive damage due to wear and tear. The second potential constraint is the amount of
free space available in the Reallocated Sector Table.

For performance reasons, the sizes of the two drive reallocation tables are limited by design,
because larger drive reallocation tables result in longer search times per command and,
consequently, a greater overall overhead on drive performance.

If the number of available spare sectors is constrained by the number of available spare sectors
rather than the amount of free space on the Reallocated Sector Table, then the value of SMART
Attribute 5 will be based on the number of spare sectors available. When a drive has all its
spare sectors available, the normalized value of SMART Attribute 5 (aka Reallocated Sector
Count) will be 100. When a drive has 10% of its spare sectors available, the normalized value of
SMART Attribute 5 will be 10. In the latter case, if the drive's SMART 5 threshold is also 10, then
a SMART 5 trip will be raised. When a drive has no spare sectors available, the normalized value
of SMART 5 will be 1.

However, the size of the Reallocated Sector Table is typically smaller than the number of
available spare sectors and therefore, typically, constrains the number of sectors that can be
reallocated. When such is the case, the value of SMART Attribute 5 will be based on the amount
of free space in the Reallocated Sector Table. The Reallocated Sector Table is used by the drive
to check if the logical address of the target sector that is to be read from or written to points to
a spare sector. This table is searched during every single read and write command. The size of
this table cannot be too large, or else drive performance will be impacted negatively. The
response time for reads and writes is critical, and the larger this table is, the longer the drive's
response time will be. In the past, this table ranged from 1000 to 5000 sectors. The size of this
table is ultimately determined by the drive vendor.

Although the number of available spare sectors can be constrained by either the number of
available spare sectors or the size of the Reallocated Sector Table, most recent drives are
designed to have the number of available spare sectors constrained by the size of their
Reallocated Sector Table. This is because recent drives tend to have abundant spare sectors,
which causes the Reallocated Sector Table size to be the constraining factor.

The value of SMART Attribute 197, especially its normalized value, depends on the amount of
free space in the Pending Reallocation Table. When this table is empty, the normalized value of
SMART Attribute 197 will be 100. When this table is full, the normalized value of SMART
Attribute 197 will be 1. Any write command will first search this table, and if the sector being
written to is found in this table, then reallocation will be performed before the data is written.
In some drives, the Pending Reallocation Table determines the values of both SMART Attribute
197 and 198 (SMART 198 is also known as Offline Scan Uncorrectable Count), because in
practice both SMART attributes refer to sectors that are pending reallocation.

When a drive runs out of spare sectors or space in its Reallocated Sector Table and,
correspondingly, the normalized value of SMART Attribute 5 reaches 1, the drive will no longer
be functional. In such a scenario, no spare sectors are available for reallocation. In such a
scenario, to prevent data loss, the drive will go into a "Read Only" mode where the drive can
accept read commands but cannot accept write commands. This "Read Only" mode indicates

that the user must not write any more data to the drive, and that the data on the drive should
be transferred to another drive for data recovery.

Similarly, when the Pending Reallocation Table is full, SMART Attribute 197 will drop down to 1.
And the drive will not function properly, but instead, enter a "Read Only" mode.

D. Bad Sectors

Unreadable sectors, which are also known as bad sectors, have the potential to occur in any
disk drive. Bad sectors can be formed at any point in the drive's lifespan, from the
manufacturing process to the end of the drive's life. Bad sectors formed during manufacturing
are called "primary" defects. Primary defects are usually handled before the drive leaves the
factory. Bad sectors that form after a drive has been shipped from the factory are called
"grown" defects. Grown defects can be handled to an extent by defect handling methods that
will be described later.

Bad sectors are an inherent part of storage drives. Such drive imperfections are expected due
to the complex construction of drive heads and media. For this reason, spare sectors are
designed to provide backup for defective sectors.

Bad sectors are caused by factors that impair the ability of the drive to retrieve data from the
media. Bad sectors may result from electrical issues, mechanical issues, or a combination of the
two.

A list of potential reasons for bad sectors may include:

a. The head may have deteriorated due to age and become less sensitive.

b. Imperfections may have been introduced into the media during manufacturing.

¢. The head may have hit disturbed particles in the drive, causing scratches on the media.
Such particles may have been created during the drive's shipping process, by shock and
vibration, by aging, or by a host of other reasons.

d. The head may have scratched the media due to an external force, such as a shock or
vibration, or due to the mechanical effect of hot or cold temperatures.

e. The height of the head may have changed, either becoming higher or lower than typical,
resulting in a weak write. This often results from shock and vibration.

f. Off-track writes due to either servo tracking issues or shock and vibration events may
have caused the data to be written onto an adjacent track. This may cause bad sectors
on the track that was supposed to be written to as well as on the track that was
accidentally infringed upon.

g. The power may have been shut off during a write operation.

The latter three causes of bad sectors are not permanent. Most bad sectors caused by these
reasons can be fixed by writing over them.

Drive electronics implement error detection and correction methods, such as Error Correction
Code (ECC) and Partial-Response Maximum-Likelihood (PRML), to detect and repair bad sectors.
Error correction techniques can recover a small number of bad sectors.

Other methods of recovering data from a bad sector include reading the data multiple times,
moving the read head slightly off track, reinitializing the head, readjusting the servo systems,
etcetera. However, these processes take time and slow down the command response.

Data recovery that takes too long may make the system feel unresponsive and lead to user
frustration. When bad sectors are caused by a group of scratches, the user may feel that the
system is not running due to the several read retries that take place, and the user may reset the
system to make the system run faster.

If such a system is on a server, the administrator will need to choose between providing slow
service or retrieving the data from other drives of the RAID system without further retries by
the system. The desire for faster system responses is the reason why some systems have their
command time-out (CTO) values set relatively short.

E. Bad Sectors Detected in the Factory (Primary Defects)

Hard drive media are manufactured to have smooth surfaces. However, imperfections on the
media created during the manufacturing process are unavoidable, and they cause bad sectors.
Therefore, the manufacturing process includes the detection and handling of such media
imperfections.

One way that factories detect media imperfections is by executing special software to validate
the drive's data. The detection of media imperfections is a time-consuming step in the factory.
Media imperfections are detected by scanning the disk from beginning to end for bad spots.
Small bad spots can be corrected by the ECC and may be permissible. Large bad spots may
result in the drive retiring affected sectors or tracks. Extremely large bad spots may result in an
entire disk or drive being marked as failed. The extent of bad spots in a drive may be used to
define the "class" of the drive, such as class "A", "B", or "C," which represents the quality of the
drive. Higher-classed drives may be sold at a premium.

There are two methods to handle bad sectors in the factory. The first method is called sector
slipping, and the second method is sector reallocation.

Sector slipping relies on the fact that there are a few unused sectors at the end of each track.
Sector slipping marks a bad sector and replaces it with the following sector. All sectors after the
bad sector are shifted forward by one. For the sake of illustration, let us say that we have a
track with five physical sectors: four logical sectors and one spare sector: 1, 2, 3, 4, s. If sector 3
is a bad sector, sector slipping would simply treat the track as having four logical sectors and
label its sectors as 1, 2, x, 3, 4. This method minimizes impact on drive performance because

logical sectors are simply moved back by one physical sector. The drive does not need to wait
for a full rotation to read upcoming sectors.

Sector reallocation is used when the number of bad sectors on the defective spot exceeds the
number of available unused sectors on the track. In sector reallocation, the bad sectors are
reallocated to another location on the drive. If the track has many errors, the whole track will
be reallocated to a different track.

In SCSI drives, bad sectors detected in the factory are recorded on the Primary Defect List
(PLIST). On SATA and NVMe drives, bad sectors detected in the factory are not visible to the
host.

F. Bad Sectors Detected After Drives Have Shipped (Grown Defects)

When a drive writes a piece of data for the first time, it always assumes the written data is
good. That is, drives do not check the validity of data after their initial writing. Bad sectors are
only detected after written data is later read.

It is important to understand that from a disk drive's point of view, bad sectors are defined as
locations on the media where data are unable to be retrieved after they have been written.
Many bad sectors are recoverable via the drive's ECC data recovery mechanism or other
methods. For bad sectors that cannot be recovered (i.e., UNC or Uncorrectable Errors), some
are unrecoverable due to permanent conditions, such as scratches on the media, and some are
due to temporary conditions, such as the data being written off-track, being overwritten by
adjacent tracks, or being written weakly. Recoverable bad sectors are also known as "soft
errors", and unrecoverable bad sectors are also known as "hard errors." These two types of bad
sectors will be further elaborated upon in the “Soft Errors and Hard Errors” section.

Unrecoverable bad sectors that result from permanent damage need to be reallocated to a
spare sector. Unrecoverable bad sectors that result from temporary conditions can be fixed by
writing over them.

When a drive detects an unrecoverable bad sector, the first thing it does is log the defect in the
Pending Reallocation Table. Uncorrectable bad sectors logged in the Pending Reallocation Table
await the next time that they are written to by the host. Uncorrectable bad sectors in the
Pending Reallocation Table are not immediately written over or reassigned because there may
still be a chance that the data on the bad sector can be recovered if environmental conditions,
such as the temperature, change.

After a drive encounters an unrecoverable bad sector, it will also send a UNC Command Status
report to the hard disk driver. We will elaborate on the hard disk driver in Section 3.

Whenever the host writes to a drive (which includes information about the target LBA, the
number of applicable sectors, and the data to be written) the drive will always check if the LBA

of the write command refers to any sector in the Pending Reallocation Table. If not, the write
proceeds normally. If yes, the drive will write to the LBA and then check if it can read what it
just wrote. If not, the drive will assign the LBA to a spare sector, and all future writes to this LBA
will go to this spare sector, which involves: a) the drive creating an entry in the Reallocated
Sector Table containing the bad LBA and the spare sector that the LBA has been reallocated to,
b) the drive incrementing SMART Attribute 5 by 1 and set the corresponding SMART trip to
"true" if the trip condition is met (e.g., if SMART Attribute 5 Normalized drops to 10), c) the
drive removing the LBA from the Pending Reallocation Table, and d) the drive decrementing
SMART Attribute 197 or 198 by 1. If yes, the drive will remove the LBA from the Pending
Reallocation Table, decrement SMART Attribute 197 or 198 by 1, and not reallocate the LBA.

The LBA of an uncorrectable bad sector may be reallocated to spare sectors in one of several
locations. However, to minimize performance impact, spare sectors that are closer to the
uncorrectable bad sector will be given higher priority for reallocation than spare sectors further
away. Spare sectors located at the end of the affected track usually have the highest priority.
For drives implementing zone bit recording, spare sectors located at the end of the affected
zone usually have the next highest priority. And spare sectors at the end of the media usually
have the lowest priority.

It is normal for a write command to have multiple sectors that are pending reallocation. The
drive may implement a policy to reassign an entire track if many of its sectors need to be
reallocated. However, whether this policy is in place is usually known only by the drive’s maker.

In some vendor-specific cases, a drive may perform a more discreet type of sector reallocation
called “automatic reallocation.” Two versions of automatic reallocation are described as
follows:

a) When a drive that implements automatic reallocation successfully reads data from a
sector after a certain number of failed retries, the drive may reallocate the sector
without letting the host know. In such a scenario, SMART Attribute 5 would reflect the
reallocation, but SMART Attribute 197 would not because the bad sector is reallocated
immediately after it is detected. To illustrate this further, let us consider an example
where a drive must unsuccessfully read a sector 10 times before listing it in its Pending
Reallocation Table. If this drive implements automatic reallocation, it will also have a
lower threshold of 3 retries, where if the data can be retrieved from the sector within 3
read retries, then no action other than data retrieval is taken; but if the data is retrieved
anywhere between 3 and 10 retries, then the data is sent to the host while the drive
discreetly reallocates the compromised sector.

b) Some implementations of automatic reallocation allow the drive to reallocate bad
sectors during the drive’s self-test. That is, if the drive’s self-test detects a bad sector,
and the data can be retrieved within some limited number of retries, then the drive may
perform automatic reallocation as described in a).

Figure 2: A typical flow for bad sector identification

host issues read
command to drive via
driver

other method?

NU

error is a hard error
(i.e., uncorrectable or
"UNC™)

L J

send UNC Command
Status to hard disk
driver

L 4

driver may re-issue
read command 3-5
times or wait until
CTO before giving up
command and
possibly
reconstructing the
data from RAID

e efror correctable via EC

send command
read normally succeeded status to
driver

L 4

driver sends
command succeeded
status to host

YES error is a soft error

complete read

log first bad sector of)
command in Pending |n$;;m;‘r:jt§rh:g;ﬁ

Reallocation Table

repnn typically
includes info about
error type and first

LBA location

10

Figure 3: A typical flow for bad sector handling

host issues write
command to drive via
driver

s sector in Reallocated Sectol
Table?

NO

i sector in Pending Reallocatid
Table?

YES

'

write and
immediately read

is read successiul?

NO

'

sector is not okay:
assign sector to
Spare sector

A 4

log sector in
Reallocated Sector
Table

write to reallocated

YES sector location

NO write normally

YES sector is okay

A J

F Y

remaove sector from
Pending Reallocation
Table

decrement SMART
197 and/or 198

remove sector from

Pending Reallocation
Table

increment SMART &

decrement SMART
187 or 198

11

G. Soft Errors and Hard Errors

A soft error is a bad sector that occurs while the drive is reading data, but the error is recovered
by the drive’s data recovery methods. Recovery methods include the ECC method and the
PRML method, re-reading, offtrack reading, modified electrical signal sensitivity, and algorithms
that are implemented inside the drive’s electrical and mechanical systems.

The exact definition of soft errors has not been standardized. However, the common
understanding is that errors only count as soft errors if a retry is needed. That is, if an
erroneous piece of data can be corrected “on the fly” without impacting drive performance, it
does not count towards a soft error. For example, if an erroneous piece of data is retrieved but
corrected by ECC, and the next sector is read without delay, then that erroneous piece of data
does not count towards a soft error.

Some definitions of soft errors do count sectors that have been corrected. However, this type
of definition arguably exaggerates the frequency of soft errors because the chance of data
correction can be as high as 1 in 10,000 bits.

In contrast with soft errors are hard errors, which are also known as Uncorrectable Errors
(UNC). The rate of hard errors is referred to as the Uncorrectable Error Rate (UER) or
Uncorrectable Bit Error Rate (UBER). Typical desktop drives have a UER of less than 1 in 10715
bits, or 125 terabytes of data. Enterprise-grade drives designed for use in RAID and have time-
limited error recovery (TLER) have a UER of less than 1 in 10717 bits, or 12.5 petabytes of data.
This requirement is stated in the Open Compute Project (OCP) storage specification.

In addition to soft and hard errors, there is another type of error called an Un-Detectable Error
(UDE). UDEs are caused by the limitations of the drive’s Error Detection Code (EDC). EDCs are
pieces of additional data attached to the main data for the purpose of detecting errors.
Therefore, UDEs are the data errors that escape the drive’s error detection logic. The chance of
encountering a UDE is very low -less than 1 in 10722 to 10723 bits (1.25 zettabytes to 12.5
zettabytes of data), depending on whether the drive is desktop or enterprise-grade.

H. Error Reporting by the Drive

The exact information contained within error reports generated by the drive is interface-
dependent. For SATA drives, drive error reports will return an error status and error code. The
error status is a byte of data that indicates whether there is an error, and the error code is a
byte of data that indicates the type of error. For example, a SATA command with no errors
might return an error status of 50h to indicate that no errors have occurred, and an error code
of 00h to indicate a null error type. On the other hand, a SATA command that results in a UNC
would return an error status of 51h to indicate the presence of an error, and an error code of
40h to indicate that the error is a UNC. Along with the error status and error code, SATA drives
will also report the error-causing LBA in the response package.

12

SATA drives can have the following error types: Interface Cyclic Redundancy Check (CRC) Error,
UNC, ID Not Found Error, Abort Error, and Command Completion Time Out Error. SCSI and
NVMe drives have similar error types, but SCSI drives have more detailed error information.

Even though the exact information contained within error reports generated by the drive is
interface dependent, all drive error reports will contain some similar information. For example,
all drive error reports will indicate the type of error, and the location of the first LBA that
encountered the error.

l. SMART Attributes

Bad sectors, among other drive health issues, can be reported to the user through SMART.
SMART stands for Self-Monitoring, Analysis, and Reporting Technology. It is a set of drive health
indicators designed to monitor the quality and performance of disk operations, analyze drive
issues, and report the condition of the disk drive to the host.

SMART was initially defined for the SATA interface. The following descriptions are primarily
defined for the SATA specification. The SCSI and NVMe interface also have similar
specifications.

Because SMART information is not always standardized, its values and interpretations may be
different between manufacturers. However, the storage industry, led by the major HDD
companies, is trying to standardize the meaning of each attribute. Therefore, the value of
SMART Attributes can be used as a reference.

SMART calls each of its indicators “attributes.” Attributes include information observed by the
drive over the course of its operation, such as temperature, power-on hours, and reallocated
sector count. SMART attributes are monitored and recorded by the disk drive and are available
for the host to examine.

Each attribute comes with two pieces of metadata: an attribute ID and an attribute name.

Each SMART attribute also comes with five pieces of data: a raw value, a normalized value, a
threshold, a worst value, and a pre-fail/advisory flag.

The raw value is simply the raw value of the SMART attribute being measured, such as the
actual number of hours that the drive has been powered on.

The normalized value is the SMART attribute scaled to some value between 1 and 253, where
values greater than 100 are typically good, and higher values are typically better.

The threshold is the normalized value below which a SMART attribute will indicate that it has
been “tripped.” A SMART trip can be thought of as an alarm sent from the drive to the host that

13

requires an immediate response. When a SMART trip occurs, users are advised to replace their
drive.

The worst value is the worst value the SMART attribute has ever attained.

The pre-fail/advisory flag indicates whether a trip of the attribute signals impending drive
failure according to the manufacturer.

Ill. Reading and Writing to a Disk Drive

This section describes the steps that occur when a host issues a read or write command to a
disk drive. Knowing this process will provide us with a deeper understanding of how bad sectors
are detected and managed by the drive's host, and how they affect the user's experience. As an
overview, during a read or write command: [A] the command will be issued by the host to the
driver, the driver will translate the command and issue the command to the drive, [B,C] the
drive will interact with data, the drive will generate a status report, [D] and the driver will react
to the outcome of the command if the driver detects an error reported by the drive.

A. The Driver Issues a Read/Write Command to the Drive

The host accesses connected devices, such as hard disks, using pieces of software in the host OS
known as drivers. A hard disk's driver translates the host's requests, such as read and write
commands, into drive-recognizable commands. However, in communicating with the drive, the
driver must also account for the different interfaces between the host and disk drive, which
include SATA, NVMe, and SCSI. When the driver sends a command, it will follow the command
specification unique to the applicable interface. However, most interfaces accept commands
based on a similar format. That is, all read and write commands contain three major
components: the Op code, LBA, and length.

The Op code is a technical term for the specific command. For example, a read command will
have a unique Op code. Other commands will each have their own Op codes. Typically, there
will be tens to hundreds of Op codes defined for a given interface. Each Op code refers to a
different command as defined in the specification of the applicable interface. Many of the Op
codes are for drive maintenance purposes, while some commands are for reading and writing
data.

The LBA is the address of the data being requested or read. The drive firmware will translate
the LBA into a physical location on the drive.

The length is the size of the data in terms of blocks. The block length defines how much data

will be read or written. For example, if the block size for a drive is 512 bytes (a common block
size), and a read command has a length of 4, then the read command will return 2048 bytes of

14

data. Because a disk drive stores data in sectors, there is another translation from the host
blocks to the physical sectors.

Initially, drives were designed with 512-byte sectors. A sector is the minimum unit of data the
drive can read or write from the drive. Each sector has its own starting and ending marks, as
well as an error protection mechanism. To improve the recording efficiency on disk drives,
many newer designs now have 4K-byte sectors. Larger sectors reduce sector overhead. It is
estimated that the space savings of a 4K sector can be up to 8%.

For years, the established block size for disk drives has been 512 bytes. Most drivers have been
written with this standard. To accommodate the 4K-byte sector size on disk drives, some hosts
have also increased their block size to 4K bytes. However, the 4K-byte host block size is not very
popular and is mostly implemented in server environments with special drives.

It is important to remember that, in most cases, the driver will read or write to multiple sectors
on a drive in a single command. And it is considered more efficient to include a larger number
of sectors in a single read or write command. For example, it is more efficient for a host to issue
one command targeting 100 sectors rather than issuing 100 commands targeting one sector
each. This is because more commands require more processing and cause performance to slow
down as a result.

However, even though drivers prefer to include more sectors in a single command, the actual
number of sectors that can be included per command is constrained by the command
structure, buffer size, and other factors. The command structure specifies the maximum length
of each command. Buffer size refers to the size of the read and write buffer in the host system
and in the disk drive. Most frequently, commands are issued to 128 or 256 sectors at a time.
However, depending on the driver and system, other sector counts per command may be
possible.

When commands are issued one after another, it is called "sequential command execution."
When commands are issued in parallel to a drive that can accept more than one command at a
time, it is called "command queueing." Parallel command execution may improve performance.
All major interfaces (i.e., SATA, SAS, and NVMe) support command queueing.

B. The Drive May Encounter Errors After Receiving a Read or Write Command

Drives are designed to perform read and write operations. However, the drive may encounter
errors while performing these tasks. Errors due to read commands are more common than
errors due to write commands because reads occur more frequently than writes.

Write errors are usually related to servomechanical issues. Examples include the drive being

unable to put the recording head on the right track, writing while the head is flying too high or
low, or the electrical signal being incorrect. These errors can be serious but occur rarely.

15

Read errors (i.e., bad sectors) are related to the media. This can manifest in the following ways
at the drive level:

i) The drive cannot find a sector location's identification mark (address mark).

ii) The drive cannot detect any signal from the media.

iii) The requested sector’s EDC detects an error.

iv) The number of retries surpasses the drive's retry limit.

v) The drive's read command timeout has been reached. For example, if the read
command timeout is 5 seconds, and the read takes longer than 5 seconds, the drive
will generate a read error. Please note that the drive's read command timeout limit
applies to all sector reads, and the timeout occurs when the read takes longer than
this timeout limit.

C. The Drive May Detect and Repair Bad Sectors

When a drive issues a read command, it may attempt to read sectors that belong to damaged
media (commands usually target multiple sectors). As soon as the drive (specifically, the drive's
firmware) encounters the first bad sector in the command, it will mark that bad sector as having
a UNC error, record that bad sector in the Pending Reallocation Table, increment SMART 197
for that bad sector, report that bad sector to the driver, and discard whatever data was read
from this sector. This sector will be reallocated when the host writes to it later.

However, potential subsequent bad sectors in the command will not be identified nor
reallocated on subsequent writes. This happens because, during the read command, as soon as
the drive encounters the first bad sector, it terminates the read operation and does not identify
other potential bad sectors covered by the command. Drive Self-Tests can be used to overcome
this limitation.

D. The Driver Responds to the Outcome of the Command

In addition to sending commands to hard disks, the driver must determine the outcome of the
command, handle the outcome, and report the outcome to the host.

Typically, the command will succeed, the drive will report to the driver that the command
succeeded, and in turn, the driver will report to the host that the command status is Good or
OK.

However, if a read command fails, the drive will report a UNC Command Status Report to the
driver, and the driver will normally retry the command 3-5 times, with the exact number of
retries depending on the specific driver or the policy set by the system. If any of the retries
succeed, the driver will report a good result to the host and move on to the next command. If
all the retries are unsuccessful, the command will fail, and the driver will report to the host that
the command status resulted in an Error. There is a limitation on the number of retries

16

attempted by the driver because the system must meet certain standards of performance and
responsiveness.

And if the drive reports a Command Timeout (CTO) to the driver, or the driver detects that the
command is taking too long according to its own CTO policy, the driver will jam the issued
command with a reset or a new command, telling the drive to give up its internal recovery
process and resetting the internal state of the drive. This jamming will cause the drive to stop
its current read or write operation, and consequently, no bad sectors will be recorded for the
unrecoverable block; nor will any sectors be marked as pending reallocation, so the offending
bad sector will not be reallocated when the host writes to it the next time.

If the driver times out, the system may use RAID information to reconstruct data rather than
spending more time performing command retries. In the extreme case, the driver may have
such a short timeout that no retries are ever performed. Upon encountering a problem with a
read command, such a driver will immediately give up the read command, construct the data
from RAID drives, and send the data to the host. The system makes this choice by considering
the trade-off in performance. If getting the RAID-reconstructed data is faster than a retry, a
retry may be deemed unnecessary.

It should be noted that hard disks and their drivers each have their own timer for determining
when a command is taking too long. If the driver's command timeout limit is shorter (e.g., 3
seconds) than the drive's command timeout limit (e.g., 5 seconds), the driver may terminate a
problematic command before the drive does. In such a scenario, the drive will not report any
errors because the command was reset by the host.

The CTO limit of the driver is determined by the system, which is typically not adjustable by the
user. However, a few systems do allow users to set command timers. For example, QNAP
Systems allows their users to set a time limit for read and write commands by specifying the
number of seconds to allocate for time-limited error recovery (TLER), error recovery control
(ERC), and command completion time limit (CCTL).

In general, the TLER/ERC has higher priority than the number of retries, because the time it
takes to retry a command is more important than the number of retries. During error recovery,
the retry time determines the system's performance. Depending on how long a read retry
takes, a system may give up on the retry and return data reconstructed from redundant data on
other drives instead. Getting data reconstructed from redundant sources is sometimes faster
than waiting for a long retry and can provide a better quality of service. In some cases, if there
is no RAID available, the system may ask the user if they wish to continue retrying a read
command. And in some cases, such as during video playback, a video glitch may be more
acceptable than paused playback.

V. Disk Drive Self-Tests

17

The disk drive self-test is a way for the disk drive to examine its own health, and to look for
newly formed bad sectors. A disk drive comes with its own firmware for performing a self-test.
Self-tests are included as part of the disk drive's design for the purposes of improving the
quality of the disk operation, preventing drive problems, and repairing damage to the drive.
This section describes popular self-test methods used in disk drives.

A. Summary of the Drive Self-Test

Drives perform self-tests to identify media, read head, write head, servomechanism, spindle,
and other electrical and mechanical issues. Self-tests can detect drive issues before drive
failure. Because a drive is an intelligent computing subsystem with a built-in processor and its
own software, a drive can detect and record its own problems.

When drives are built, they undergo a special testing program to ensure their quality before
they leave the factory. This type of testing program is generally called a “burn-in test.” The
testing program evaluates the mechanical characteristics, media characteristics, and
servomechanism of the drive. It also detects defective spots and maps out defective spots to
other locations on the drive. As drive capacity increased over time, the length of the factory
testing programs increased from hours to days.

After a drive is commissioned to operate in the field, the drive can periodically perform self-
tests to detect drive issues. Unlike the factory test, a self-test is not used to determine the class
of the drive, but rather is used to detect and protect the drive against failures.

However, a drive self-test may reduce the performance of a drive during its normal operation
because the self-test occupies some of the resources the drive uses to service the host's
requests. Therefore, a self-test can be viewed as a trade-off between the performance and
reliability of a drive. There is also an option to perform self-tests during off-peak hours.

The result of a self-test is stored in the self-test error log and self-test error list, which reside on
the drive in an area that also contains drive metadata. In addition, the count of offline scan
errors detected during a self-test is also recorded in SMART Attribute 198, which has a similar
meaning to SMART Attribute 197.

B. Short and Extended Self-Test

Self-tests can be categorized into short and Extended Self-Tests. Short self-tests usually take 2
minutes and perform basic read/write, electrical, mechanical, and servomechanism testing.
Extended Self-Tests usually perform a complete media scan. Because the capacity of disk drives
has increased to many TBs, the scanning of the media can take many hours or days to
complete.

18

Short self-tests can also scan the media if the media scan can complete within 120 seconds.
During a short self-test, some drives will just scan important sectors, such as the beginning of
the drive or vulnerable tracks, such as those near the landing area, to validate that those
sectors are good.

C. Online and Offline Self-Test

Another way to categorize self-tests is into online and offline tests. During an online self-test,
the drive will continue the test and only report to the host after the test is complete. During the
test, no other command can be accepted and/or performed by the drive. If an online short self-
test is run, the drive will be unresponsive for 2 minutes, and if an online Extended Self-Test is
performed, the drive may be unresponsive for several hours. Online self-tests are seldom used
except during drive manufacturing or in a controlled environment.

Offline self-tests are performed in the background. The test progress (shown in terms of the
percentage of completion) can be polled by the host, and the estimated remaining test time is
also reported by the drive.

When a drive is performing an offline self-test, it can receive other commands, such as
read/write commands. As soon as one or more read/write commands are received, the drive
will suspend its current offline self-test and perform the read/write requests. To accommodate
and prioritize the foreground read/write tasks, there will be a vendor-defined timer to resume
the offline self-test in the background once the foreground task is complete. For example, if the
"resume" timer is set for 3 seconds, the drive will wait for at least 3 seconds with no read/write
requests before it resumes its offline self-test. Offline self-tests are the most common form of
self-test because the drive can continue to accept read/write operations while the test is
running. However, with offline self-tests, there is an impact on drive performance due to the
time required for the drive to transition from self-test operations to regular read/write
operations. But due to the implementation of the "resume" timer, the impact is perhaps
minimized.

Both online and offline self-tests will affect drive performance by slowing down the host's
read/write requests. It is recommended to perform most self-tests during off-peak hours to
avoid impacting performance.

D. Auto Self-Test

Drives may also implement automatic self-testing based on a vendor-defined schedule.

The auto self-test is a feature implemented by some drives during manufacturing, sometimes at
the request of original equipment manufacturers (OEMs). For example, a drive can be
configured to run an automatic self-test every week or month.

19

Automatic self-tests are initiated inside the drive without a host command. When the drive's
internal timer is up, the drive will start to perform a self-test. Automatic self-tests are
performed in the same way as an offline self-test. In other words, during an automatic self-test,
the drive can accept commands by suspending the self-test, and once the timer has expired, the
drive will resume its automatic self-test.

Most of the time, automatic self-testing is enabled and configured at the request of OEM
customers. Drives shipped to the general market do not have this feature turned on for fear
that the performance impact may be unacceptable. OEM customers who desire rigorous drive
testing may ask drive manufacturers to enable automatic self-testing to improve the drive's
quality.

V. Bad Sector Handling by NAS Systems

This section describes some potential ways that network-attached storage (NAS) systems
handle bad sectors. This includes the ways that NAS Systems identify and fix errors.

A. RAID in the Degraded Mode

A NAS device is a computer specialized for storing data and providing that data over the
internet or a network. When a NAS device encounters an uncorrectable read error, it will issue
an io error event, set a Faulty condition, and put RAID into a "degraded" mode.

If the NAS supports RAID, the NAS will reconstruct the information on the bad sector from
redundant information on other drives. This reconstructed data should be usable by the
system.

i. However, due to this UNC, RAID will enter a degraded mode. This lets the NAS user
know that there may be no protection from data loss if other drives within the RAID
fail catastrophically (e.g., are unable to spin up).

ii. One rationale for having a RAID is to ensure that if a drive breaks, the data that was
on that drive is still available. If one drive is removed from a RAID that is set up for
redundancy and a new one replaces it, the RAID array can be rebuilt.

iii. When one UNC exists, the RAID usually cannot tolerate another drive's removal or
failure, because if you wish to rebuild the drive having the UNC (i.e., replace the
drive having the UNC with a new drive and rebuilding the information from the old
drive on the new drive via the redundancy provided by the other drives in your
RAID) and another drive is removed or fails, then the sector of the UNC area cannot
be salvaged (unless the RAID is set up to tolerate more than one failure, such as
RAID 6). This is the reason the NAS placed the RAID in a degraded mode.

iv. ~ When the RAID is in degraded mode, the user should take action to prevent further
issues. These actions may include:

(1) Replacing the drive with the UNC with a new drive and rebuilding the RAID.
(2) Removing the drive with the UNC, reinserting the drive, and rebuilding the RAID.

20

(3) Performing a self-test with the drive with the UNC, reinserting the drive, and
rebuilding the RAID.

(4) Or repairing the UNC-causing bad sector by RAID Scrubbing. Raid Scrubbing can
scan the RAID and repair the UNC-causing bad sector with data calculated from
other drives in the RAID. When the UNC-causing bad sector is repaired in this
way, the drive will reallocate the bad sector.

B. Detecting Bad Sectors in a RAID
There are several methods to find bad sectors in a RAID:

Through read commands
By scanning for bad blocks
By scrubbing the RAID

By performing a

PwnNE

Methods 1 to 3 have a drawback. As mentioned previously, when the host issues a single read
command, it usually does so to multiple sectors (e.g., 32 or 128) for efficiency reasons. When
there is an uncorrectable error on the read command, the error will only report the LBA of the
first occurrence of the UNC. In other words, if there are multiple bad sectors in the command,
the drive will only report the first bad sector. Subsequent bad sectors in the command will be
ignored by the host and drive. The drive may only list the first bad sector in the Pending
Reallocation Table.

Methods 1 to 3 are also affected by the host's command timeout limit. When the drive's
internal command timeout limit is longer than the host's, the host may terminate a command
with a reset before the drive finishes the command. In such a scenario, the drive will not record
any bad sectors detected. SMART Attribute 197 (Current Pending Sector Count) will not be
incremented. And bad sectors will not be reallocated when new data is written to them.

These two drawbacks are not present when performing a Self-Test. When a drive performs a
Self-Test, it will typically record every error location. (Note: this may vary depending on vendor
implementation). Because there is no limit to the number of errors reported per command, the
drive can continue to detect one error after another without missing any bad sectors. This
makes the Self-Tests an optimal way of finding entire clusters of bad sectors.

C. Scan for Bad Blocks

NAS companies recommend that users scan for bad blocks to detect any errors on a drive.
Scanning for bad blocks uses the driver to read a drive from the beginning of the drive to the
end of the drive while detecting bad sectors. However, scanning for bad blocks may not detect
all bad sectors if the detection process results in a CTO error or if the error affects multiple bad

21

sectors in close proximity. Furthermore, the scan for bad blocks does not automatically repair
those bad sectors.

D. RAID Scrubbing

The NAS manufacturer, QNAP Systems, defines RAID Scrubbing as follows: “RAID Scrubbing is
used to verify the data integrity of disk groups with RAID 5 and RAID 6 configurations. It works
by running a redundancy check to detect and correct inconsistencies that are undetectable
during routine usage. Periodically running RAID Scrubbing can detect potential corrupted data
or disks at an early stage, giving your NAS the chance to attempt automatic repairs or to report
disk-related issues, helping to ensure the integrity of user data and disk groups.”

RAID Scrubbing performs a “data scan” over the RAID data area. In some cases, this may be
limited to areas containing the user's data instead of the whole drive. RAID Scrubbing detects
any “bad” locations in the data area by scanning over the data area and performing a data
consistency check to detect any inconsistent data. For example, if the data is readable, but
inconsistent with a parity check, then the data on the RAID is bad. Data consistency issues
cannot be resolved by the RAID alone. It needs an extra mechanism such as a Btrfs system to
correct the error.

The principle behind RAID Scrubbing is to detect bad sectors and use redundant RAID data from
other drives to "repair" those bad sectors. The hope is that when data is written to the bad
sectors, it can overwrite the previously bad data on those sectors. However, writing data to a
scratched sector will not repair the sector. It is still a bad sector unless the drive reallocates the
bad sector. The important thing is to let the drive perform the reallocation process to repair the
bad sector.

Depending on the RAID Scrubbing implementation, the repair may be partial. For example, if
the RAID Scrubbing detects just one UNC out of multiple UNC sectors, it may only mark the first
UNC as pending reallocation and repair the first UNC, leaving the rest of the UNCs unrepaired.
In the case of host CTOs, the "repair" might only involve overwriting the bad sectors without
reallocating them. Therefore, whether RAID Scrubbing actually repairs all bad sectors depends
on the implementation.

A more reliable way to repair bad sectors is to perform a Self-Test first, to identify all potential
sectors pending reallocation before RAID Scrubbing. When RAID Scrubbing is performed after a

SMART Self-Test, all bad sectors will have been added to the Pending Reallocation Table, and
reallocation can be correctly performed on all bad sectors.

VI. Recommended Bad Sector Management Practices
This section recommends practices for minimizing the effects of bad sectors, especially for NAS

systems. The section is divided into RAID and non-RAID configurations.

22

A. For RAID NAS Systems

If a drive is in a RAID configuration, such as RAID 1 or RAID 5, and a low-level read or write
command fails, then the system will retry the command. If the retry fails, the NAS will
increment the 10_Error_Count. If the IO_Error_Count is greater than the IO_Error_Limit (e.g.,
512), the NAS will mark the drive as having a "FAULT" error. (Note: the FAULT error is different
from the RAID Degraded error.)

When a "FAULT" error is encountered, the following steps are recommended:
1. Perform a Self-Test (SST) with the Extended SMART Test option to identify bad sector
locations.
2. If the Self-Test with Extended SMART Test option detects bad sectors, perform RAID
Scrubbing to fix the bad sectors.

The Self-Test (with the Extended Option) can scan the whole drive, detect all bad sectors, and
mark the problematic sectors as pending reallocation, even if the bad sectors exist in close
proximity. Future data written to these pending sectors will initiate the reallocation process and
fix the bad sectors. Self-Tests solve the issues with CTOs and multiple bad sectors in close
proximity by marking all potential bad sectors for reassignment.

RAID Scrubbing alone may not fix all the bad sectors if the errors are detected by CTOs or
caused by multiple bad sectors targeted by a single command. When there is a CTO error, RAID
Scrubbing simply finds the location of the CTO error, reads the data that is supposed to be
there from redundant RAID data, and writes the data to the bad sector. Because the bad sector
is detected by a CTO, no pending reallocation mark is set, and data written to the bad sector
will still be bad. For multiple bad sectors targeted by a single command, only the first bad sector
is marked as pending reallocation, and the remaining bad sectors are not marked. Writing to
the remaining bad sectors will not fix them.

Therefore, the recommendation is to perform a Self-Test with the Extended SMART Test option
first, followed by RAID Scrubbing. This process can detect all bad sectors and repair them.

B. For Non-RAID NAS Systems

If drives are not in a RAID configuration (i.e., there is no data redundancy), data may simply be
lost when a read or write command fails. On non-RAID systems, such as Just a Bunch of Disks
(JBOD) systems, a bad sector can cause data loss.

Recommendations when a read or write command fails:

If there is backup data available, the recommended steps are:

23

1. To perform a Self-Test with the Extended SMART Test option. This identifies all bad
sectors and marks them for reallocation. When new data is written to them, they will be
reallocated.

2. Torestore the affected file from a backup.

If there is no backup available, the options are:
1. To perform a Self-Test with the Extended SMART Test option. This identifies all bad
sectors and marks them for reallocation. When new data is written to them, they will be
reallocated. After this step, one can take the following options:

Option 1: Delete the affected file. 99% of the time the bad sector is on the data field
instead of the system metadata. By removing the bad file, the bad sector becomes
available for later writes.

Option 2: Clone the drive to a new drive and ignore the error that might appear when
cloning the drive.

Non-redundant systems, such as JBOD, are meant for use in environments that can accept data
loss. Such systems may be appropriate when the data is non-essential, or if the user is relying
on backups or copies of the data stored in multiple locations to recover the data. Many modern
PC users are in this situation.

Because there is no data redundancy within the system, the data cannot be recovered from the
system itself. In many cases, the user will have data loss. Though a few options for data
recovery may be available, it will often remain uncertain whether the condition of a drive
warrants drive replacement. Bad sectors can occur in any drive, healthy or not. If the condition
occurs many times, it is better to replace the drive.

VII. Summary

Disk drives are precision instruments that form an essential component of modern computers.
Most of the time they work as intended. However, due to their environment or operating
conditions, the sheer volume of operations they undergo on a daily basis, and the tight
tolerances under which they must operate, occasional bad sectors are expected to occur. Given
that they are expected, drives, drivers, systems, and RAID all have built-in mechanisms for
handling them. Their occurrence, while not always catastrophic to the drive, can result in data
loss if the user is not prepared. This type of data loss can be minimized through best practices,
such as backing up data, setting up RAID, periodically performing Self-Tests with the Extended
SMART Test option followed by RAID scrubbing, rebuilding a volume from backup or RAID when
necessary, and monitoring of drive health indicators to check whether bad sectors are on the
rise.

24

VIIl. References

1. https://docs.qnap.com/nas-outdated/QTS4.3.4/en/GUID-OBE980D3-1190-486B-A1E8-
228DB71A9C93.html

2. https://www.gnap.com/en/news/2017/automatically-enabled-raid-scrubbing-with-qts-4-3-
30210-build-
20170606#:~:text=RAID%20Scrubbing%20is%20used%20to,are%20undetectable%20during%20
routine%20usage.

3. https://www.gnap.com/en/how-to/tutorial/article/how-to-use-data-scrubbing-to-prevent-
data-corruption

4. https://en.wikipedia.org/wiki/Data_scrubbing

5. https://louwrentius.com/scrub-your-nas-hard-drives-regularly-if-you-care-about-your-
data.html

6. https://www.gnap.com/en/how-to/fag/article/my-raid-is-in-degraded-mode-what-should-i-
do

25

https://docs.qnap.com/nas-outdated/QTS4.3.4/en/GUID-0BE980D3-1190-486B-A1E8-228DB71A9C93.html
https://docs.qnap.com/nas-outdated/QTS4.3.4/en/GUID-0BE980D3-1190-486B-A1E8-228DB71A9C93.html
https://www.qnap.com/en/news/2017/automatically-enabled-raid-scrubbing-with-qts-4-3-30210-build-20170606#:~:text=RAID%20Scrubbing%20is%20used%20to,are%20undetectable%20during%20routine%20usage
https://www.qnap.com/en/news/2017/automatically-enabled-raid-scrubbing-with-qts-4-3-30210-build-20170606#:~:text=RAID%20Scrubbing%20is%20used%20to,are%20undetectable%20during%20routine%20usage
https://www.qnap.com/en/news/2017/automatically-enabled-raid-scrubbing-with-qts-4-3-30210-build-20170606#:~:text=RAID%20Scrubbing%20is%20used%20to,are%20undetectable%20during%20routine%20usage
https://www.qnap.com/en/news/2017/automatically-enabled-raid-scrubbing-with-qts-4-3-30210-build-20170606#:~:text=RAID%20Scrubbing%20is%20used%20to,are%20undetectable%20during%20routine%20usage
https://www.qnap.com/en/how-to/tutorial/article/how-to-use-data-scrubbing-to-prevent-data-corruption
https://www.qnap.com/en/how-to/tutorial/article/how-to-use-data-scrubbing-to-prevent-data-corruption
https://en.wikipedia.org/wiki/Data_scrubbing
https://louwrentius.com/scrub-your-nas-hard-drives-regularly-if-you-care-about-your-data.html
https://louwrentius.com/scrub-your-nas-hard-drives-regularly-if-you-care-about-your-data.html
https://www.qnap.com/en/how-to/faq/article/my-raid-is-in-degraded-mode-what-should-i-do
https://www.qnap.com/en/how-to/faq/article/my-raid-is-in-degraded-mode-what-should-i-do

	I. Overview
	II. Introduction to Disk Drive Design
	A. Head and Media
	B. Sectors and Tracks
	C. Spare Sectors
	D. Bad Sectors
	E. Bad Sectors Detected in the Factory (Primary Defects)
	F. Bad Sectors Detected After Drives Have Shipped (Grown Defects)
	G. Soft Errors and Hard Errors
	H. Error Reporting by the Drive
	I. SMART Attributes

	III. Reading and Writing to a Disk Drive
	A. The Driver Issues a Read/Write Command to the Drive
	B. The Drive May Encounter Errors After Receiving a Read or Write Command
	C. The Drive May Detect and Repair Bad Sectors
	D. The Driver Responds to the Outcome of the Command

	IV. Disk Drive Self-Tests
	A. Summary of the Drive Self-Test
	B. Short and Extended Self-Test
	C. Online and Offline Self-Test
	D. Auto Self-Test

	V. Bad Sector Handling by NAS Systems
	A. RAID in the Degraded Mode
	B. Detecting Bad Sectors in a RAID
	C. Scan for Bad Blocks
	D. RAID Scrubbing

	VI. Recommended Bad Sector Management Practices
	A. For RAID NAS Systems
	B. For Non-RAID NAS Systems

	VII. Summary
	VIII. References

